2,274 research outputs found

    The clinical epidemiology of hysteria: vanishingly rare, or just vanishing?

    Get PDF
    Vanish 1. intr. To disappear from sight or become invisible, esp. in a rapid and mysterious way (Shorter Oxford English Dictionary, 1972). There is a well-known view that hysteria has virtually disappeared in the Western world. There are two versions of this argument: one is that there was never a clinical disorder that coincided with the diagnosis, and hysteria has now been reconstructed as something else (e.g. Micale, 1993). The other is that hysteria did exist but has now become much rarer than it was (most famously, Veith, 1965). According to this view, hysteria is to be found in patients from developing countries, but in Western countries it is ‘virtually a historical curiosity’ (BMJ 1976). It is the latter view that is – in our experience – most commonly held by our colleagues in general psychiatry. Yet, this opinion is not shared by those who are involved in the clinical care of patients with neurological disorders: ‘to a psychiatrist who sees patients on the medical and surgical services of a general hospital, it appears that hysteria remains a rather common phenomenon’ (Brownsberger, 1966). A number of descriptions from liaison psychiatry services support this opinion (Akagi & House, 2001). There are good reasons why it might be difficult to judge just how common (or rare) hysteria really is. Epidemiology depends on reliable case definition, case ascertainment and selection of a suitable population to study (Neugebauer et al. 1980), and each of these poses problems in the study of hysterical disorders

    Finite Element Modelling of Bends and Creases during Folding Ultra Thin Stainless Steel Foils

    Get PDF
    Finite Element Modelling of an ultra thin foil of SUS 304 stainless steel is carried out. These foils are 20 mm and below in thickness. The development of stresses and strains during folding of these foils is studied. The objective of this study is to induce qualities of paper in the foils of stainless steel such that a public sculpture of origami can be built with the foil. Finite Element modelling of the fold, reverse fold, junctions of multiple folds as well as the finger-dents are carried out to quantify the extent of straining the steel foil would undergo while an object of origami is folded with it. It is important to know the extent of straining the foil would undergo during folding operation. With this knowledge, the through-thickness microstructure and microtexture can be studied which influence the fracture toughness and low cycle fatigue properties of the steel foil. The foil with the requisite qualities of paper can then be manufactured

    Numerical study on load-settlement relationships of shallow foundation under extremely low confining pressure

    Get PDF
    In order to investigate the ground behavior under shallow foundation with extremely low confining pressure, numerical analysis has been performed using the Material Point Method. Material Point Method is one of particle-based methods but it still uses numerical grid. It has been applied to many problems of geomaterial since it was proposed for the first time. The authors focus on the robustness of the method under large deformation problem and applied it to the shallow foundation problem of geomaterial. In this paper, the formulation and implementation of Material Point Method are described, followed by verification and validation for the implemented code. Then, the parametric investigations on ground behavior under shallow foundation have been carried out

    Large deformation analysis of ground with wall movement or hallow foundation under extremely low confining pressure using PIV

    Get PDF
    Large-scale natural disasters have occurred frequently in recent years. In such disasters, large ground deformation has been a recurring phenomenon. As it directly affects the structure, has dureable design is necessitated to minimize the damages. Additionally, the fracture process zones are predicted using numerical analysis, and thereafter, the results of the analysis are validated after comparison with the experimental ones. In this study, image analysis is performed using particle image velocimetry (PIV), and subsequently, the analysis results are validated by the comparison. We herein aim to improve the precision of the image-analysis results, and examine the experimental or analytical condition of reproducing the deformation

    Pulse-density-modulated power control of a 4 kW, 450 kHz voltage-source inverter for induction melting applications

    Get PDF
    This paper presents a 4 kW, 450 kHz voltage-source inverter with a series resonant circuit for induction melting applications, which is characterized by the power control based on pulse density modulation (PDM). The pulse-density-modulated inverter makes an induction melting system simple and compact, thus leading to higher efficiency. A modulation strategy is proposed to realize the induction melting system capable of operation at the frequency and power level of interest. Some interesting experimental results are shown to verify the validity of the concept </p

    One-dimensional transport in polymer nanofibers

    Full text link
    We report our transport studies in quasi one-dimensional (1D) conductors - helical polyacetylene fibers doped with iodine and the data analysis for other polymer single fibers and tubes. We found that at 30 K < T < 300 K the conductance and the current-voltage characteristics follow the power law: G(T) ~ T^alpha with alpha ~ 2.2-7.2 and I(V) ~ V^betta with betta ~ 2-5.7. Both G(T) and I(V) show the features characteristic of 1D systems such as Luttinger liquid or Wigner crystal. The relationship between our results and theories for tunneling in 1D systems is discussed.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Letter

    Evolution of trace gases and particles emitted by a chaparral fire in California

    Get PDF
    Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO_2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO_2; CO; NO_x; NH_3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O_3 to excess CO in the plume (ΔO_3/ΔCO) increased from −5.13 (±1.13) × 10^(−3) to 10.2 (±2.16) × 10^(−2) in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively) over the same time since emission. Based on the rapid decay of C_2H_4 we infer an in-plume average OH concentration of 5.27 (±0.97) × 10^6 molec cm^(−3), consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH_3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NO_x was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first ~4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO_2) increased by a factor of 2.50 ± 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO_2 decreased sharply for the first hour and then increased slowly with a net decrease of ~20% over 4 h. The fraction of thickly coated rBC particles increased up to ~85% over the 4 h aging period. Decreasing OA accompanied by increased scattering/particle coating in initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations

    Compensation algorithms based on the p-q and CPC theories for switching compensators in micro-grids

    Get PDF
    The main objective of this paper is to com-pare the applicability and p erformance of a switching compensator when it is controlled by algorithms derived from the pq–Theory and from the Current’s Physical Components Power Theory (CPC-Theory) considering a micro-grid application. Compensation characteristics derived from each one of these set of power definitions are highlighted, and simulation results of test cases are shown. Special attention is put on the oscillating instan-taneous real power, as it may produce torque oscillations or frequency variations in weak systems (micro-grids) generators. The oscillating instantaneous real power, as defined in the pq-Theory, gives the amount of energy oscillating between the source and the load, and its com-pensation using a switching compensator must have an energy storage element to exchan ge it with the load. The energy storage element can be ea sily calculated with the pq-Theory
    corecore